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SEDIMENTATION BEHAVIOR OF ORGANIC - INORGANIC COMPOSITES 

BY OPTICAL TURBIDOMETRY 

Reshma K. Harrinauth 

ABSTRACT 
 

Sedimentation is one of many characterization tools used to test materials in 

nanotechnology. Characterization of settling behavior is complex as there are many 

variables which can affect sedimentation.  In our research, we focused on sedimentation 

in colloidal systems with the aid of an optical turbidometer. Nanoparticles of CeO2 (Ceria 

Oxide) and TiO2 (Titanium Dioxide) are embedded onto a polymeric matrix of a 

thermally responsive microgel of poly(N-isopropylacrylamide) (PNIPAM) and 

interpenetrating chains of poly(acrylic acid) to create novel composites. The composites 

are loaded with the inorganic oxide nanoparticles at different weight percent from a low 

value of 10 weight % to 75 weight %. The loading of the colloidal particles affects the 

sedimentation rate. In this thesis a turbidomenter is used to characterize the settling rate, 

which is an important characteristic for application of these new composites.    

TiO2 is a key constituent in many industrial products; cosmetics, paints, ceramics 

and used in waste water remediation. It is a potent photocatalyst which breaks down 

almost any organic compound when exposed to ultraviolet light. By combining 

nanoparticles of TiO2 with microgels of a polymer, the composites can facilitate use and 

recovery of the catalyst. Gravity settling of these loaded composites provides an easy 
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separation of TiO2 nanoparticles. In this context, characterization of settling plays an 

important role. CeO2 composites are used to polish oxide coatings in the semiconductor 

industry and sedimentation of the composite particles is important as it can affect the 

efficiency of the planarization process. Therefore, measuring sedimentation of these 

composites is necessary. 

In this study, the settling behavior is measured optically for a variety of conditions 

that differ in loading of inorganic nanoparticles within the microgels, temperature of the 

solution, and concentration of particles in solution.  The overall goal is to understand the 

sedimentation behavior of these novel composites and facilitate their use in industrial 

processes. 
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NOMENCLATURE 

Af  Projected frontal area of the settling particle 

CD  Drag coefficient for a solid particle 

d  Diameter of the particle 

Dp Diameter of the polymer 

Fg  Gravitational force 

Fb  Buoyant force 

Fd  Drag force 

g  Gravitational force 

h1 height from the top of the turbidometer holder to top of aperture 

h2 height from the top of turbidimeter holder to the bottom of the aperture 

H difference (h2-h1), representing the height of the window 

Io Intensity of transmitted light 

It  Intensity of incident light 

L Optical path length 

Np  number concentration of particles 

Npi number of concentration of particle ‘i’ 

NRe  Reynolds Number 

t Time 

Vs  Settling velocity 

Y(Vsi) Fraction of total particles in class ‘i’ 
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ρp  Density of the polymer 

ρf   Density of the fluid 

ρsp Bulk density of the settling particle  

ρw Mass density of water 

τ Turbidity parameter 

το Τurbidity at initial time 

υ  Velocity of the object 

μ Viscosity 

μw Viscosity of water 
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CHAPTER ONE: INTRODUCTION 
 

The main purpose of this thesis is to obtain a better understanding of novel composite 

particles by characterization of their sedimentation behavior. Sedimentation  of particles has 

been utilized in fields ranging from engineering to wastewater remediation to materials science1-

5. Sedimentation has also been the subject of many experimental and theoretical studies.  In the 

latter case, development of a theoretical framework for sedimentation has been a challenge to 

many researchers when dealing with complex systems such as highly concentrated suspensions, 

polydisperse solutions, and aggregating or flocculating dispersions6-8.  

In this thesis, our interest lies in novel composite particles that combine organic polymers 

with inorganic metal oxides9.  Composite materials are of increasing interest and are made up of 

two or more materials that are present together but remain chemically different entities. There 

has been a surge in research on composite materials as they are extremely useful in medicine, 

paints, and many cosmetic products10-15. 

Recently, novel composite materials that are composed of polymeric microgels and either 

titanium dioxide (TiO2) or cerium oxide (CeO2) nanoparticles have been developed9.   Titanium 

dioxide is a widely recognized photocatalyst that has been used in wastewater remediation10, 16, 

17. Nanoparticles of titanium dioxide, when exposed to ultraviolet light, have been found to be 

very efficient in the breakdown of organic matter. Cerium oxide nanoparticles are known to be 

useful in polishing silica wafers in the semi-conductor industry for planarization purposes18-20. 
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Combination of these inorganic metal oxides within crosslinked and thermally responsive 

microgels (Figure 1.1) of poly (N-isoproprylacrylamide) provides many benefits for applications 

in photocatalysis or planarization.  For example, embedding nanometer sized titanium dioxide 

particles within the polymeric gels can provide a useful method for the recovery and re-use of the 

TiO2 photocatalyst. Cerium oxide nanoparticles embedded within the polymer microgels can 

eliminate surface scratches and defects for the case of chemical mechanical polishing since the 

composite particle has both soft and hard characteristics.  

Sedimentation is known to be determined by density differences between the dispersed 

particles and the fluid medium as well as factors such as porosity when dealing with permeable 

systems. Therefore, measuring and interpreting settling behavior is a simple approach for 

characterizing composite particles. One goal of this thesis is to investigate the optical technique 

of turbidity measurement for characterization of the settling of composite particles and in turn, 

establish sedimentation as a tool for characterizing the ceria-microgel and the titania-microgel 

composite particles. A second goal is to explore the sedimentation behavior of titania-polymer 

particles as this can help in developing gravity settling approaches for separation and recovery of 

the photocatalyst.  Finally, characterizing the settling behavior of the ceria-polymer particles is 

also important as it can affect the slurry polishing process. 

The research performed in this thesis accomplishes the goals above.  Chapter 2 of this 

thesis describes the technique of optical turbidity, the experimental apparatus, and the model for 

interpretation of the experimental data. Chapter 2 also reviews background information on 

optical turbidity and the validation of the technique against solid silica spheres using Stokes’ 

Law.  Chapter 3 describes settling of titanium dioxide composite particles and the effect of 

titania loading, temperature, and concentration on the sedimentation behavior. Here, optical 
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microscopy results are also presented to gain insight into the flocculation of the composite 

particles. Chapter 4 details the experiments on the ceria composite particles and the effect of 

temperature and loading on the settling behavior. Finally, Chapter 5 provides a summary and 

conclusions for the project.  

  3  
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Figure 1.1: Schematic of the embedded nanoparticles within the polymeric matrix of a 
crosslinked microgel 

 

  4  



www.manaraa.com

 

 

CHAPTER TWO: TURBIDITY: MEASUREMENTS AND INTERPRETATION 

2.1 Background 

Optical techniques such as static light scattering, dynamic light scattering and turbidity 

measurements, due to their non-contact, non-invasive properties are well suited to the study of 

colloidal and macromolecular suspensions21-26.  Static and dynamic light scattering are standard 

methods for investigating size, shape, and diffusion of particles and polymers in fluid media27,28.  

However, methods such as dynamic light scattering (DLS) are of limited use when characterizing 

systems containing particles that sediment since a necessary requirement for DLS is Brownian 

diffusion. Turbidometeric methods, on the other hand, have the advantage of being simple and 

well-suited to sedimenting systems.  

Turbidity refers to light attenuation (by scattering and absorbing) from the presence of 

finely suspended materials29, 30. Turbidity measurements or nephelometry involve the relative 

measurement of intensity for light scattered through a range of angles and its ratio to the intensity 

of the incident beam. The use of nephelometry is a common procedure in environmental and 

water engineering where pollutant concentration or fine suspensions need to be routinely 

characterized31. The light attenuation by a single particle depends strongly on its size and for a 

collective suspension of particles, turbidity of the solution then becomes a function of both 

concentration of the particles and their sizes.  Changes in the particle concentration due to 

sedimentation can be manifested in the turbidity of the solution.  The goal in this chapter is to 
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demonstrate that measurement of the changes in turbidity of a solution with time provides a 

simple and convenient method to characterize colloidal suspensions. 

2.2 Experimental apparatus 

The experimental apparatus used to measure the settling rate of the particles was a 

turbidometer (model DRT 1000, HF instruments). The turbidometer works in a simple manner 

wherein light is scattered at a 90o angle to the incident beam and a photo detector converts the 

light intensity into a voltage29.  A schematic of the turbidometer is seen in figure 2.1. As shown 

in the figure, a standard size cylindrical test tube (12mm x 75 mm) contains the particle solution.  

A water bath was connected to the turbidometer holder to circulate water and maintain a desired 

temperature. The photodetector signal was recorded using a computer with a program written in 

Hewlett Packard Visual Engineering Environment (HP VEE). During the experiment, 1000 

points were acquired at an analog-to-digital sampling frequency of 1 kHz and the mean value of 

the voltage was recorded as a function of time. For samples which took much longer than a day 

for settling, a timer was used to switch the turbidometer on and off.   

 2.3 Sedimentation and Stokes Law 

Sedimentation, where particles fall under the action of gravity through a fluid in which 

they are suspended, is a way of separating particles from fluids as well as classifying particles 

with different settling speeds1. Stokes law has been commonly used to predict the velocity of a 

single solid particle in an infinite fluid medium at low Reynolds number1, 4, 32. A particle settling 

in a liquid is acted upon by the gravitational force, buoyancy force, and the fluid drag force.  As 

indicated by the figure 2.2, the gravitational force, Fg, acting in the downward direction is 
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counteracted by the buoyancy force and the drag force. The terminal velocity of the particle is 

achieved when drag force is equal to the gravitational force minus the buoyancy force  

dbg FFF =−     (1) 

The net gravitational force on a sphere can be given as33  

( )
6

3dgFF fpbg ρρπ −=−   (2) 

The drag force can be further written as: 

2

2
1 υρ ffDd ACF =    (3) 

The drag coefficient (CD) is a function of several parameters, such as particle shape, particle 

aggregation, permeability, and fluid characteristics 33. For creeping flow or Stokes regime, where 

the inertial effects are negligible, the drag coefficient for a spherical solid particle can be given 

exactly as33-35: 

Re

24
N

Cd =            (4) 

where NRe  is the Reynolds’ number and can be expressed as: 

μ
ρ spVD

N =Re     (5) 

Thus, the Stokes settling velocity for solid spherical particles is as follows9, 33-35 

( ) 2

18 p
w

wsp
s D

g
V

μ
ρρ −

=
   (6) 
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Settling behavior under Stokes’ law is valid for very dilute suspensions, where hindered settling 

effects are negligible, and for either a small solid spherical particle or a very viscous medium 

(NRe<<<1).  

One of the first tasks in our research was to validate the use of turbidity measurement to 

measure settling velocity.  Towards this end, we measured settling of solid silica spheres of two 

different sizes and compared the results with the prediction of Stokes’ law.   

2.4 Interpretation of turbidity during sedimentation 

The established theory of photo-sedimentation uses low volume fraction of particles and 

measures the attenuation of the light beam occurring by the particles at varying settling depths as 

a function of time31. The attenuation can be expressed as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

o

t

I
I

 and a single turbidity parameter 

is commonly used, (τ), which is the fractional decrease in intensity of light. The turbidity can be 

simply related to the number of particles per unit volume (Np) by 

p
t

o N
I
I

L
ατ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ln1

    (7)
 

Equation (7) suggests that a normalized turbidity signal can provide information on the 

evolution of particle concentration due to sedimentation36. For particles with a single settling Vs, 

we can use the following equation for the turbidometer setup shown in figure 2 with H being the 

height of the aperture (h2-h1)36:  

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

s

s

sp

sP

V
ht

H
V

VN
VtN 11
,0
,

   (8) 
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In figure 2.3, the schematic shows the concentration of the particles settling in the test 

tube with a single velocity.  At a time t1, the particles fall through a height of h1 and the 

normalized turbidity signal starts decreasing because the concentration in the optical aperture 

starts to decrease. As the particles continue to fall with the same rate, a linear decay in the signal 

is observed as shown in the graph. Once the majority of the particles have fallen through the 

region where the light enters (between h1 and h2), the turbidity signal goes to zero.  

In the case of the composite particles, different settling velocities would be observed due 

to differences in loading of the nanoparticles. In this case, it has been shown by Coutinho and 

coworkers that the evolution in the normalized turbidity signal can give a distribution of settling 

velocities by using the following relation36. 

( ) ( )
( ) ( )si

sipi

sipi

o

VY
VN
VtNt

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Σ=

,0
,

τ
τ

   (9) 

In this equation, the number of particles in class, ‘i’ at  intial time, is indicated by Npi (0, Vsi) 

where the settling velocity is Vsi. The number of particles in class‘i’ with a settling velocity of Vsi 

at time t in the sampling window is then Npi (t,Vsi) and Y(Vsi) is the fraction of total particles in 

class‘i’.  Complete details of the mathematical model are available in the paper by Coutinho, 

Harrinauth, and Gupta36. 

2.5 Results and discussion 

Solid silica spherical particles were used to validate the experimental method and the 

mathematical model. Commercially available, ‘large’ silica sphere particles with an average 

diameter ~3.21±0.35μm were suspended in deionized water and turbidity measurements were 
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performed. Figure 2.3 shows settling data for the large silica spheres. We can make an easy 

estimate of the settling velocity using equation 8 from the value of t1, which is the time at which 

the turbidity signal starts to drop steeply in figure 2.3.  The experimental data indicates that 

t1~7500 seconds. Using the value of h1=3.9 cm (Figure 2.1) of the turbidometer, we can estimate 

that the average settling velocity is ~5.2x10-4 cm/s. Applying Stokes’ law with the known 

properties of the particle and the fluid, the settling velocity can be predicted to be 5.4 x10-4 cm/s, 

which clearly indicates good agreement between the settling measured using the turbidity setup 

and theoretical expectations.  A more accurate analysis of the turbidity signal that captures the 

small variations in terms of polydispersity effects can be performed using equation 9.  Coutinho 

and coworkers have shown that this analysis allows interpretation of the turbidity signal as a 

distribution of settling velocities36.  

In addition to the large silica particles, settling behavior of fine silica particles was also 

performed. These fine silica particles were synthesized in the research laboratory using a sol-gel 

technique (materials courtesy of Shim and Gupta) and had a diameter of ~450±30nm. Figure 2.4 

shows the data for settling of these sub-micron particles.  The impact of the small size is easily 

observed by the long settling times. The complete settling occurred over five days.  Figure 3.4 

also indicates that in the case of these small particles it is more difficult to distinguish a sharp 

break in the turbidity signal.  As a quick estimate we can pick a time where the most noticeable 

change in slope is occurring and this gives t1=2.5 days.  Using a similar reasoning as before, the 

estimated average settling velocity is then 1.8x10-5 cm/s.  The settling velocity of the fine 

particles calculated via Stokes’ Law is 1.1x10-5 cm/s, which is in good agreement with the 

estimate from experiments.  In the case of the fine particles, the more accurate analysis of the 

settling distribution has been performed by Coutinho and coworkers36, which shows that the 
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velocity distribution is broader than the case for the large particles and is consistent with the 

absence of a sharp break in the turbidity signal. 

In summary, the turbidity measurements for the solid silica spheres across a size range of 

approximately 0.5 – 5μm agree very well with the expected results from theoretical relation such 

as Stokes law.  This provides support for the potential use of turbidity measurements as a simple 

and useful tool to characterize composite particles by analysis of their sedimentation behavior.  

The following chapters focus on the characterization two novel composite particles made from 

titania nanoparticles in a polymeric microgel and ceria nanoparticles in a polymeric microgel. 
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 Figure 2.1 Schematic of turbidometer set-up for settling experiments
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 Figure 2.2 Schematic of forces acting on a particle settling in liquid 
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Figure 2.3 Schematic of normalized turbidity  
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Figure 2.4 Normalized turbidity signal for the settling ‘large’ silica spheres 

 

 

 

 

 

 

 

 

  15 



www.manaraa.com

            

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

ize
d 

Tu
rb

id
ity

654321
Time (days)

0.45μm t1 

Figure 2.5 Normalized turbidity signal for the settling ‘fine’ silica sphere 

  16 



www.manaraa.com

 

 

CHAPTER THREE: SETTLING OF TITANIUM OXIDE COMPOSITE 

3.1 Introduction 

Titanium dioxide (TiO2) is a common metal oxide that has emerged as an excellent 

photocatalyst material in environmental remediation37, 38. Titanium (IV) oxide exists in nature in 

two tetragonal forms as rutile and anatase. A third form, Brookite, is a rhombic form. Anatase 

and rutile can be easily prepared in the laboratory and these two forms have  been used in many 

photocatalytic studies39. Commercially available TiO2 is commonly DegussaTM P25, which 

contains the anatase and rutile phases in a ratio of about 3:17.  

Photocatalytic reaction  on TiO2 surfaces has generated a great deal of interest in 

chemical degradation of contaminants because of its low cost, simplicity, and high efficiency10, 

34, 37, 40. Organic chemicals that are found as pollutants in wastewater from industrial or domestic 

sources must be removed or destroyed before being released to the environment. These 

pollutants can also be found in ground and surface waters, which also require treatment to 

achieve potable quality. The increase in these environmental pollutants has seen a rise in public 

concern for the development of novel treatment methods. Using nano-scale TiO2 greatly 

increases the surface area of titanium dioxide and permits a better reduction of organic pollutants 

in wastewater remediation.  

However, the recovery of titania nanoparticles suspended in an aqueous medium has 

remained a challenge. In this context, the attachment of TiO2 nanoparticles to polymeric 

microgels is an innovative approach to address recovery and use of TiO2 photocatalyst.  Coutinho 
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and Gupta have shown that cross-linked microgels of PNIPAM containing interpenetrating 

chains of poly(acrylic acid) (PAAc) allow composite particles to be prepared that can settle 

rapidly36.  The titania retains its chemical identity and works as an excellent photocatalyst while 

the highly porous microgel allows light to reach the nanoparticle surface and permits easy 

exchange of fluid.  The rapid settling of the composite facilitates the retrieval of the composite 

material in an efficient manner.  In this chapter, the settling of titanium dioxide composite 

particles, the effect of titania loading, temperature, and concentration is evaluated.  

3.2 Experimental method 

 Different stock solutions of the titania-microgel composite containing a fixed, average 

mass fraction of titania (10%-75%) were used.  Prior to characterization in the turbidometer, 

each stock solution was diluted with the addition of deionized water to a total volume of 5cm3
.  

To study the effect of particle concentration, the relative amounts of stock solution and water 

was varied. The test tube with the sample solution was sealed from the top with Parafilm™ and 

sonicated for 5 minutes to redisperse the particles uniformly in solution. The sample was then 

removed and placed in the turbidometer holder for approximately five minutes to ensure the 

content is equilibrated at the desired temperature. After thermal equilibration, the sample was 

then quickly removed and inverted four times in order to redisperse the particles.  

Acquisition of the turbidity as a photodetector voltage was performed every five seconds 

as described in Chapter 2. Eight runs were performed for each sample and these were averaged. 

In the experiments that were conducted at 15°C, the test tube had to be wiped after each run with 

kimwipe as a thin layer of condensation was formed on the outside of the test tube. It should be 
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noted neither the polymeric microgels without any titania nor the titania nanoparticles alone 

settle over a time frame of days. 

Flocculation of the composite particles was also examined using optical microscopy of 

flocs deposited on a glass slide.  Since the flocs were very small, in order to measure the area of 

the flocs it was very important that the glass slide was cleaned properly of any dust particles.  

The glass slide was cleaned thoroughly by initially soaking it in deionized water.  The glass slide 

was then carefully removed from the water bath and placed into a soapy water bath solution. A 

second clean water bath was used to rinse the soap and the glass slide was then dried with the aid 

of a stream of nitrogen.  

Each loading of the titania composite was measured using optical microscopy. A test tube 

containing 850μl of the titania-composite stock solution and 4.15ml of water was shaken and 

agitated in the same manner as the turbidity testing. The clean glass slide was placed into a large 

Petri dish and the content of the test tube was poured gently onto the glass slide and the settled 

aggregates on the slide were observed in transmission using an optical microscope. Objective 

lenses with 4X and 10X magnification were used in order to view the flocs.  

 

3.3 Results and discussions 

3.3.1 Effect of titania loading 

  Understanding settling of the titania-microgel for different loadings of titania 

nanoparticles is an important aspect of this research. The settling rate of the composite particles 

will be an important piece of information in any process application where gravity settling of the 

composites will be exploited.  
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In this study, particles with various weight percentages of titania nanoparticles ranging 

from 10% to 75% have been characterized. As the mass fraction of the titania increases, the 

effective density of the particle increases and this should also impact the sedimentation of the 

particles. We can calculate the effective density of the dry polymer particles as  

( ) ( ) polTiO

TiOpol
p ff

f
ρρ

ρρ
ρ

*1
2

2

+−
=

  (10) 

where ρTiO2 is the density of the TiO2 (~ 4.16 g/cm3), f is the mass fraction of the TiO2 per 

particle, ρpol is the density of the polymer (~1.07g/ml)9. From the equation given above, 10% of 

titania loading in each particle gives the effective density of the composite as 1.16 g/cm3
.  At 

75% loading of the titania particles, the effective density changes to 2.42 g/cm3
.  Thus, there is a 

substantial change in effective density of the composite particles with increase in its titania 

loading.  

Figure 3.1 shows the settling data as normalized turbidity for the various loadings of 

titania in composite particles at ambient temperature (~25°C).   It is clear from the data, that at 

the lowest loading of 10% the settling is slowest and at the highest loading of ~75%, the settling 

is fastest.  The data in figure 3.1 shows that when f=10%, the settling time is approximately 2000 

seconds.  For values of loading of 25% and 50% loaded, the particles show a settling time of 

approximately 300 seconds and 600 seconds.  In contrast, particles with 75% titania settle 

extremely rapidly in approximately 100 seconds. 

Coutinho and coworkers9 have shown that the mean settling velocity of the composite 

particles obtained from data in figure 3.1 can be correlated to the average loading of titania.  A 

theoretical framework that accounts for both the changes in effective density and the changes in 
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permeability of the particle with increased loading of titania has been applied by Coutinho and 

coworkers.  Thus, results such as those shown in figure 3.1 clearly indicate the usefulness of 

turbidity measurements for characterizing the novel composite particles as the measurement of 

settling velocity can be rapidly interpreted in terms of average loading of the titania photocatalyst 

in the composites.   

3.3.2 Effect of temperature 

One of the polymeric constituents in the composite particles is PNIPAM, which is a 

thermally responsive polymer and is known to exhibit a lower critical solution 

temperature(LCST) near 32°C in aqueous solutions41, 42.  Stimuli responsive polymers, where the 

polymer can change size in response to external stimuli like temperature, pH and ionic strength, 

have  many applications36, 41.   For cross-linked polymeric microgels of PNIPAM, when the 

solution temperature is low, the polymeric microgels absorb water and exhibit a swollen state.  

At high temperatures, an abrupt volume shrinkage of the particle results in expulsion of free 

water within the polymer network42-48. The expansion and collapsing property of PNIPAM 

microgels has been extensively investigated in the field of drug delivery system, biosensors, 

tissue engineering42-47.  

Figure 3.2 shows schematically the swelling and shrinking of the polymeric microgels at 

a transition temperature.  The microgels used in this study were approximately 750nm in the 

swollen state and 330nm in the collapsed state.   As mentioned earlier, chains of a polyelectrolyte 

(PAAc) were were introduced within the cross-linked PNIPAM microgel to promote the loading 

of the TiO2 nanoparticles within the polymeric particles36. The change in the overall volume of 

the microgel as it transitions with temperature can affect the effective density of the composite 

particle and also the permeability, which are both important factors in the settling behavior.   
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Figure 3.3 shows the settling behavior of composites containing 25% by weight of titania 

at three temperatures.   The experimental data shows that as the temperature increases from 15°C 

to 25°C, the composite particles settle at earlier times. Further increase beyond the transition 

temperature has a significantly smaller effect.  We can qualitatively understand this trend in 

terms of the changes in the particle properties.  At the low temperature of 15°C the particle is 

highly swollen with water and has a very high porosity (> 0.95).   As a consequence, the 

effective density contrast between the particle and water is very low, which makes the particle 

settle slowly.  As the temperature increases, there is a decrease in the size of the polymer 

microgel due to the thermally responsive nature of the PNIPAM. The increase in density due to 

smaller size appears to dominate the effects of porosity and the particle settles faster. 

Figure 3.4 shows the experimental data on settling for a composite with 50% titania 

loading at the three temperatures.  The general effect of temperature here is similar to the 25% 

loading.  However, the shift in settling between 15°C and 25°C is perceptibly smaller because 

the particles were denser to begin with and settled faster. 

3.3.3 Effect of concentration 

 Concentration of the sample is an important characteristic of the settling behavior as the 

particle to particle interaction is an important contribution.  It is known that for solid particles as 

the concentration of the sample becomes too high, hindered settling can occur and reduce the 

settling velocity. Therefore, the effect of concentration was studied to ensure that all the 

experiments did not entail hindered settling.  

Figure 3.5 shows data for three different dilute concentrations of the sample particles. 

Over the range of particle concentrations studied, it is clear that even a four-fold increase in 
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particle mass concentration (0.083 mg/ml to 0.33 mg/ml) does not change settling time 

significantly (the change of a few tens of seconds is within the error of the measurement).   We 

can conclude that the particle concentration in all our experiments is low enough that effects of 

hindered settling can be discounted.  

3.3.4 Optical microscopy of flocculated composite particles 

Smoluchowski was one the first scientists to examine the dynamics of floc growth for 

suspensions subjected to shear and showed that collision of the fine particles with interactions 

could lead to an increase in the size of the aggregates49.  Since the titania-microgel composite 

particles have polymeric chains of PAAc that can interact with other particles through the PAAc 

chains as well as titania nanopartiles in the neighboring particles, we have observed that these 

composites have a tendency to aggregate as they settle within the sample test tube.   

Coutinho and coworkers9 have shown the floc formation and the ensuing increase in size 

as well as porosity are very important in the low drag force and rapid settling of the composite 

particles.  In the settling tube, the appearance of the flocs is very powdery.  These flocs are also 

very delicate and under slight agitation break apart very easily. To gain some insight into the 

nature and sizes of these aggregates, analysis of the flocs was done using optical microscopy. 

Figures 3.6 to 3.9 show optical images of the flocs formed using composites with two 

different loading of titania. As shown in the figures we can observe the range of the aggregates 

size.  Regardless of the loading of the oxide, the sizes of these aggregates were within 10-100 

μm and their appearance is very similar.  Coutinho and coworkers9 have shown that by 

accounting for the fractal-like nature of these flocs and by modeling the settling of these highly 

porous, large aggregates can explain the rapid settling of the composite particles.   They have 
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found that good agreement between theoretical predictions and experimental data can be found 

when the floc size of 10-100 μm is used. 
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Figure 3.1: Settling of composites at various weight percentage of titania in each particle 

  25 



www.manaraa.com

 

 

Ttransition ~ 32°C 

Low Temp. High Temp. 

 

Figure 3.2 Schematic of microgel response above and below the volume phase transition 
temperature. 
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Figure 3.3 Settling of composite with 25% titania at temperatures below and above 
transition temperature (T~32°C) 
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Figure 3.4 Settling of composite with 50% titania at temperatures below and above 
transition temperature (T~32°C) 
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Figure 3.5: Settling of composite with 50% titania and different particle concentration in 
solution 
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 Figure 3.6 Optical images of flocs of composites with 50% titania at 4X magnification.  
The image size is 2672μm x 2136 μm. 
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Figure 3.7  Optical images of flocs of composites with 50% titania at 10X magnification.  The 
image size is 1069 μm x 854 μm. 
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Figure 3.8 Optical images of flocs of composites with 75% titania at 4X magnification.  The 
image size is 2672 μm x 2136μm. 
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Figure 3.9 Optical images of flocs of composites with 75% titania at 10X magnification.  The 
image size is 1069 μm x 854 μm. 
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CHAPTER FOUR: SETTLING OF CERIUM OXIDE COMPOSITE 
 

4.1 Introduction 

The rapid advances in the microelectronics industry demand significant improvements in 

Chemical Mechanical Polishing (CMP), which is a widely used technique for the planarization of 

metal and dielectric films to accomplish multilevel metallization (Figure 4.1). As the 

microelectronic device dimensions keep on decreasing and the minimum feature size becomes 

smaller than 0.1 μm, a very thin layer of material has to be removed and a flat and clean surface 

finish has to be achieved during the polishing of wafers. The fabrication of these small devices 

without imperfections requires improvements in the CMP process19, 50, 51. 

The CMP process generally consists of a rotating wafer pressed face down onto a 

rotating, resilient polishing pad while polishing slurry containing abrasive particles and chemical 

reagents flows in between the wafer and the pad. A schematic of the CMP process is illustrated 

in figure 4.1.  The combined action of polishing pad, abrasive particles and chemical reagents 

results in material removal and polishing of the wafer surface52. The polishing slurry provides 

both chemical and mechanical action where it is used to remove and planarize the wafer surface. 

The mechanical action helps achieve the required planarization and uniformity of the silica wafer 

which is accomplished by the use of the abrasive particles in the slurry. The chemical action is 

achieved by the slurry incorporating oxidizing agents or additives content which improves 

degradation. The erosive action in CMP is mostly provided by the submicrometer size abrasive 
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particles as they flow between the pad and wafer surface under pressure. The magnitude of the 

mechanical action is in turn determined by the size and nature of the abrasive particles. The 

major process variables in CMP are the platen speed, down force and the slurry18, 19, 50, 51.   

The use of hard inorganic particles in commercially available slurries can cause scratches 

on the surface of the wafer. It has been studied in the past that mixed or modified abrasive 

particles can reduce the number of imperfections on the wafer53, 54. The creation of a novel 

inorganic- organic composite particle of the types discussed in earlier chapters has been 

proposed as a good candidate to be used as an abrasive slurry in the CMP process55, 56. In these 

novel particles, the polymeric network consists once again of the PNIPAM microgels and 

interpenetrating chains of PAAc.  In addition, siloxane functional group was incorporated onto 

the network.   Ceria nanoparticles have been shown19, 20 to be useful in CMP and therefore, these 

new composites are ceria-microgel rather than titania-microgel. The characteristics of the 

composite particle are the softness of the polymer network and surface hardness due to the 

presence of the ceria nanoparticles. This combination allows for the use of the composite particle 

to be suitable for the prevention of defects and any aggressive scratching on the wafer. One of 

the main characteristic behaviors of the ceria loaded composite particles is the settling rate, 

which is an important parameter during the slurry polishing.  Therefore, in this chapter the 

sedimentation behavior of the ceria-polymer composites has been explored as a function of 

temperature and loading.  As a comparison, the sedimentation of ceria nanoparticles alone is also 

characterized. 

The experimental set-up for the settling studies was similar to the titania-microgel 

particles and has been described in Chapters 2 and 3. Briefly, the ceria composite was added to 

the turbidometer sample tube from the stock solution and diluted with deionized water. The 
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sample was placed in the turbidometer and where it was allowed to equilibrate to the desired 

temperature. It was quickly removed and inverted to ensure the particles were fully dispersed in 

the suspension. It was placed into the turbidometer holding and data was acquired using the data 

acquisition software as described in section 2.2 

4.2 Result and discussion 

The use of pure ceria particles was used as a reference for the settling time for the hybrid 

ceria particles and it is observed in figure 4.2 that these nanoparticles settle over a long time of 

approximately 12000 seconds.  Figure 4.2 also shows the settling of the polymer composites 

loaded with 50% and 25% ceria nanoparticles. The loading of the particles affects the 

sedimentation rate and similar behavior to the titania microgels was observed.  At the 50% 

loading there is a faster settling time of approximately 1500 seconds at ambient temperature 

(25°C). This faster settling time indicates that the effective density of the hybrid particles has 

increased substantially from the bare ceria nanoparticles. The 25% loaded ceria composite had a 

settling time of 3500 seconds and again this is a substantial difference in the sedimentation rate 

of the pure ceria particles.  The trend with ceria loading is similar to that for the titania-microgel 

composites where decreasing the loading caused slower settling. 

The effect of temperature also had an effect of the settling rate of the 25% and 50% 

ceria–microgels.  In figure 4.3 the temperature at 35°C shows a settling time of approximately 

1000 seconds for the 50% ceria-microgel composites. However as the temperature decreases to 

15°C the settling rate is longer, the particle settles at approximately 1800 seconds. The 25% ceria 

loaded particles were also tested at temperatures of 25°C and 35°C (Figure 4.4).  The settling 

time was 4000 seconds and 2000 seconds, respectively. As discussed in Chapter 3, the changes 
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in temperature affect the porosity of the particles, their size, and the density contrast with the 

fluid. The results in Figure 4.3 and 4.4 show that as the temperature of the composite particle 

suspension decreases below the transition temperature, the drag force decreases. The results also 

show that when using the hybrid ceria composite particles, the enhanced settling of the particles 

in the slurry will require continuous agitation of the slurry mixture to maintain uniform particle 

distribution.  
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 Figure 4.2 Settling of pure ceria nanoparticles at ambient temperature compared against 
composites with 25% and 50% ceria loading. 
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Figure 4.3: Settling of composite with 50% ceria at temperatures below and     above the 
transition temperature (T~32°C) 
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Figure 4.4: Settling of composite with 25% ceria at temperatures below and     above the 
transition temperature (T~32°C) 
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CHAPTER FIVE: SUMMARY AND CONCLUSIONS 

 In summary, this thesis has focused on the sedimentation of two composite particles with 

an interpenetrating network of polymers and embedded with inorganic oxide nanoparticles of 

titania or ceria. The focus has been on the characterization of these particles via sedimentation. 

Turbidity has been used as a simple technique to identify the settling rate of these colloidal 

particles. The settling rate of solid silica particles has been used to validate the technique by 

comparing theoretical predictions of settling with the experimental method.   

 The novel titania-microgel particles have shown rapid settling behavior once the titania 

nanoparticles are embedded within the polymeric framework. This has been advantageous in the 

field of waste water remediation where the titania nanoparticles are used as photocatalyst and the 

recovery of the composite particles can be much simpler using sedimentation.  It was found that 

the loading of the titania nanoparticles onto the framework of the polymeric network effectively 

changes the density of the particles and the increased porosity of the flocs of the composites 

affects the settling rate of these particles. Temperature is also a factor since the polymeric 

framework consists of a temperature sensitive polymer, PNIPAM, which causes the particles to 

exhibit a collapse and expansion behavior near a transition temperature. The combined influence 

of changes in effective density and the porosity with temperature influence the settling behavior. 

 The use of novel composite particles with embedded ceria nanoparticles is effective in the 

CMP process and these can be used as an alternative for the commonly used commercial 
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abrasives. However, the ceria-microgels show rapid settling rates and indicate that constant 

agitation is required for their suspension.  

 Overall, the technique of sedimentation is ideal in the case of characterizing these 

composite particles as it forms the basis of a simple characterization. The experiments in this 

thesis have explored the settling rate of porous composite particles and shown that a variety of 

parameters such as temperature, particle loading, and concentration affect the settling behavior.  

Combination of experiments such as the ones described in this thesis with theoretical 

understanding can be valuable in the study of complex systems of polymeric microgels and 

inorganic nanoparticles. 
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